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A Boundary Element Solution Approach
for the Conjugate Heat Transfer Problem
in Thermally Developing Region of a Thick Walled Pipe

Chang-Yong Choi*
Department of Mechanical & Automotive Engineering, Jeonju University,
Hyoja-dong, 3 Ga 1200, Jeonju 560-759, Korea

This paper presents a sole application of boundary element method to the conjugate heat
transfer problem of thermally developing laminar flow in a thick walled pipe when the fluid
velocities are fully developed. Due to the coupled mechanism of heat conduction in the solid
region and heat convection in the fluid region, two separate solutions in the solid and fluid
regions are sought to match the solid-fluid interface continuity condition. In this method, the
dual reciprocity boundary element method (DRBEM) with the axial direction marching scheme
is used to solve the heat convection problem and the conventional boundary element method
(BEM) of axisymmetric model is applied to solve the heat conduction problem. An iterative and
numerically stable BEM solution algorithm is presented, which uses the coupled interface
conditions explicitly instead of uncoupled conditions. Both the local convective heat transfer
coefficient at solid-fluid interface and the local mean fluid temperature are initially guessed and
updated as the unknown interface thermal conditions in the iterative solution procedure. Two
examples imposing uniform temperature and heat flux boundary conditions are tested in ther-
mally developing region and compared with analytic solutions where available. The benchmark
test results are shown to be in good agreement with the analytic solutions for both examples with
different boundary conditions.
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g . Boundary integrals involving 7" or *

H . Coefficient matrix involving ¢*
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. Cylindrical coordinates
. Temperature

7,2

T

u . General dependent variable
w . Axial flow velocity

X,y

,2 . Cartesian coordinates

Greek symbols

. Thermal diffusivity

. Initially unknown coefficient
. Boundary

. Kronecker delta

. Relative error

: Angle

D M N R

. Parameter taking the values between 0
and 1

. Relaxation factor

. Coefficient of viscosity

. Linear interpolation function

e R ™

. Solution domain

Subscripts

. Pipe entrance of heating section
. Fluid region

: Source point or inner boundary
. Collocation point

. Outer boundary

> Solid region

. Wall surface

82:1)0;'-'—"—*:0

. Ambient condition

Superscripts

m : Time level

- . Specified value

* . Fundamental solution

A~

. Particular solution

1. Introduction

When the thermal boundary condition is known
at the outer surface of the thick walled pipe and
the thermal conditions at the solid-fluid interface
are not known a priori, heat convection in a pipe
flow becomes the conjugate heat transfer prob-
lem. For the thick walled pipes, thermal bound-
ary conditions imposed at the outer wall surface
are usually different from the inner surface con-
ditions due to the axial heat conduction across the
walls surrounding the fluid. This effect is known

to be especially significant at the thermally devel-
oping region in the pipe (Barozzi and Pagliarini,
1985).

Analytic and numerical solution methods for
the conjugate heat transfer problem have been
studied for many years. Mori et al.(1976 ; 1974)
used the analytic and experimental methods to
study the conjugate heat transfer problems in a
parallel plate channel and in a circular pipe
with fully developed velocity profile. Barozzi and
Pagliarini (1985) proposed a combining method
of the superposition principle with the finite ele-
ment method (FEM) for the case of fully devel-
oped laminar flow in a pipe. For the same sub-
ject, Campo and Schuler (1998) applied the finite
difference method (FDM) as well. The simulta-
neously developing flow situations both for the
temperature and the velocity profiles were also
investigated using the FEM by Pagliarini (1991).
Recently the boundary element methods (BEM)
combined with the FDM or FVM are applied to
the conjugate heat transfer problems of the par-
allel plate channel and rectangular ducts, where
heat conduction in the solid region was solved
using the BEM, while heat convection in the fluid
region was solved using the FDM or FVM (He et
al., 1995 ; Divo et al., 2002 ; Al-Bakhit and Fakheri,
2006). In these studies, they presented iterative
solution algorithm, and showed some merits of
the BEM solution method.

This paper presents the sole application of
BEM to the conjugate heat transfer problem in
thermally developing laminar flow of a thick
walled pipe when the fluid velocities are fully
developed. For the solution of this conjugate
heat transfer problem, BEM has the distinct ad-
vantage over FDM, FVM or FEM since the bound-
ary meshing is good enough to meet the require-
ment of temperature and heat flux continuity at
the solid-fluid interface. And, in general, BEM’s
heat flux calculation is likely to be more accurate
and convenient than the FDM or FEM’s heat flux
calculation (Banerjee, 1994). Due to the coupled
mechanism of heat conduction in the solid and
heat convection in the fluid, two separate solu-
tions in the solid and fluid regions are sought to
match the solid—fluid interface continuity condi-
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tion. In this method, the dual reciprocity bound-
ary element method (DRBEM) with the axial
direction marching scheme (Choi, 1999) is used
to solve the heat convection problem and the con-
ventional BEM with the axisymmetric model is
applied to solve the heat conduction problem.
Calculations are performed iteratively until the
continuities of temperature and heat flux at the
interfacial boundary are satisfied. Initial guess for
the unknown interfacial thermal boundary con-
ditions is made to start the iterative calculation
procedure.

In this study, an iterative and numerically sta-
ble BEM solution algorithm is presented, which
uses the coupled interface conditions explicitly
instead of uncoupled ones (Hribersek and Kuhn,
2000) . Both the local convective heat transfer co-
efficient at the solid—-fluid interface and the local
mean fluid temperature are initially guessed and
updated as the unknown interfacial thermal con-
ditions in the iterative solution procedure. Nu-
merical solutions by the BEM are obtained for
the constant temperature and heat flux imposed-
boundary conditions at the outer surface of the
thick walled pipe. The solutions in the thermally
developing region are compared to previous study
results to validate the salient feature of the present
approach. The effects of relevant parameters on
the wall heat conduction are also investigated and
discussed.

2. Governing Equations
and Boundary Conditions

The conjugate heat transfer problem to be an-
alyzed is shown in Fig. 1. Fluid flow situation
inside of the thick walled pipe is assumed to be
fully developed steady laminar and the fluid has
constant transport properties of incompressible
Newtonian fluid. At the entrance of the finite
heating region, the fluid temperature is uniform.
The outer surface of pipe section with a finite
length is subjected to a uniform heat flux, and
both end sections except the heated pipe section
are thermally insulated. Due to the effect of the
pipe thickness in the thermally developing region,
wall temperature variations in both the longitu-

(a) Thick walled pipe
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(b) Thermal boundary section
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(c) Convective flow inside a pipe

Fig. 1 Schematics of the problem to be analyzed

dinal and radial directions are important in this
problem. Based on the assumptions mentioned
above, the governing equations and related bound-
ary conditions can be expressed as follows :

In the solid region,

V2 Ts=

0 0T FTs
Zor )+ Z 0 (la)
(7,2) E0Qs
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_n OTs _
at 2=0, oz =0 (1b)
at z=1, 3872‘5 =0 (1c)

at ¥ =17, Ts: T: Tw

0Ts _ __ qu <Id>
and/or an =gq= ke

In the fluid region,
_Fw_ Fw_1 dP

2 el
Vaw ox? v u dz’ (2a)
(x,y) €8,
Ty , Ty w 0T,
2 _ S f_ S
V=52 57 ~a 02° (2b)
(x,v,2) EQr
at (x,y) €I, w=0 (2¢)
at z2=0, T=T. (2d)

Continuity condition at the solid-fluid inter-
face is given as

0T 0Ty
on on (3)

where Q, w, u, p, T, k, and a represent solution
domain, flow velocity in axial direction, coeftfi-

at r=r;, Ts=Ty and ks =k

cient of viscosity, pressure, temperature, thermal
conductivity, and thermal diffusivity, respectively.
In addition the subscripts s, f, 7,0, w, and e de-
note solid region, fluid region, inner radius of the
pipe, outer radius of the pipe, boundary condition
given at the wall, and initial condition given at
the pipe entrance of heating section respectively.
For the coordinate system adopted, z coordinate
represents the axial direction and x-y coordinates
are attached to the cross-sectional surface while
7 coordinate is the radial direction from the cen-
terline of the pipe. It should be noted that the
different coordinate system is used for solid and
fluid region to reflect the mathematical and geo-
metrical characteristics of the problems for the
present BEM analysis.

3. Axisymmetric Boundary Element
Equation for the Solid Region

Considering a situation of steady-state axisy-
mmetric heat conduction in a homogeneous iso-
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Tle, 2

(a) 3-D domain
Fig. 2 Axisymmetric body for the BEM analysis

(b) 2-D domain

tropic medium of domain £ bounded by surface
I', as shown in Fig. 2, the boundary integral
equation for the three-dimensional problem can
be written as

T+ [ To*dr=[ aT*dr— [ r1ear ()

where 7* is the fundamental solution, ¢* is the
normal derivative of 7* along the boundary, and
c; is a constant that depends on the geometry at
the point 7 under consideration (Banerjee, 1994).
In this equation, it is noted that the convective
heat transfer coefficient % is set to zero for the
temperature or heat flux boundary conditions.
However, if a convective boundary condition is
imposed on the boundary, ¢ is set to (k/k) Tw
with ambient temperature 7%, and / is not equal
to zero.

Now for the axisymmetric problem, the differ-
ential surface boundary dI" should be replaced
by »d@dI” where the differential of I", dI turns
out to be the differential line boundary :

c;-ﬂ%—_/;/gTq*rdﬁdF

(5)
_ * _ ﬁ %
= [ [aT*raoar— [ [ TT*rdoar
Because 7 and ¢ are independent of angular di-
rection @, Eq. (5) can be rewritten as

eI+ [T [ q*dordr
=[af " T*dorar— [ "1 [" 7*a6rar o

And let us define the @ integrated weighting func-
tion as
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_ 2n e 2r "
Tr=["T*doand g*= [ " q*do ()

Then an axisymmetric boundary element equa-
tion is obtained by discretizing the integrals with
boundary elements as follows :

N
CZTZ+ZI - th*VdF

_ & % $h 1 T * (8a>
=2, Ta*rdr =2y, [, WTT" rar
where
—«_ AE(m) ., 9T*
= A+B)™ 1 " on (80)
m=-2B__ A=ri+r"+(z—2)%, B=2rir (8¢c)
(A+B) 7" I 1

In Egs. (8b) and (8¢c), E(m) is the complete el-
liptic integral of the Ist kind of modulus m and
the subscript 7 represents the source point. De-
tailed expressions of the weighting functions can
be found in the references (Ligget and Liu, 1993 ;
Long et al., 1993).

In the numerical solution of the equation, the
linear boundary element type is chosen for the
present study. Thus 7 and ¢ in the integrals can
be modeled using the linear interpolation func-
tions, and the integrals are to be evaluated by the
various numerical quadrature schemes (Choi and
Jo, 2003). In this study, the Gaussian quadrature
method is suitable for the case i#j. However, in
case where 7 and ; are on the same element, the
singularity of the fundamental solution requires a
special integration scheme. For this purpose, the
composite Gaussian quadrature formula is used,
which is accurate and easy to implement.

Assembling the above integrals on each ele-
ment, then Eq. (8a) can be expressed as

g 1 .
j=zi (Hij—f—? G"jhf) Tf_jzzl Gisq; (9)
where
Hy=H i+ iy

Hy=lisn 5= [ gt rdl' [ ha vl

Gz’j:g?(j—l)‘f'gilj:_/jz_ ¢zT*VdF+-[1_¢1T*7dF
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4. Dual Reciprocity Boundary Element
Equation for the Fluid Region

For the DRBEM solution of thermally devel-
oping flow inside an arbitrarily shaped duct (see
Figure 3), Eqs. (2a) and (2b) with specified bound-
ary and inlet conditions can be generalized as
the following type of Poisson equation (Choi
and Jo, 2003).

Momentum equation :
Viu(x,y) =b(x,v), (x,y) EL (1)
Energy equation :
Viu(x,y)=bx,y.2,u), (x,y) €2  (12)

The boundary conditions at the duct surface (i.e.,
at the solid-fluid interface) are

at (x,v)EN, u(x,y)=u (13)

at (x,v) €L, q(x,y) =W=c] (14)

and the inlet boundary condition for the energy
equation is expressed as
at 2=0, u(x,¥y) =uo (15)

As shown in Fig. 4, [1+13=1"is the total bound-
ary of solution domain £2, » denotes the normal
to the boundary, the over-bar denotes a specified

Fig. 3 Fully developed flow inside an arbitrarily
shaped duct
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value, and %, is the given inlet temperature con-
dition. Now the variables for the convective heat
transfer problem can be written as

Momentum equation :

ulx,y)=w (16)
b(x,v) :% %Zconstant (17)

Energy equation :
ulx,y)=T (18)

br.y.2. 00 =L wiey 72D )

Applying the usual boundary element technique
to Eq.(11) or Eq. (12) based on the use of the
fundamental solution and reciprocity principle
(Green’s theorem) (Choi and Jo, 2000), a bound-
ary integral equation can be deduced as

ciurf-/;uq*df—ﬁqu*dFZLbu*dQ (20)

The key method of DRBEM is to take the do-
main integral of Eq.(20) to the boundary and
remove the needs of complicated domain discreti-
zation. To do this, either the source term & (x, )

4 5 8
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2
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(b) Double nodes system

Fig. 4 Boundary element discretization scheme for
corner treatment
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or b(x,y,2,u) is expanded as its values at each
node j using a set of interpolating functions f;

as
b(x,y) ENZT Bifi(x,v)
T e

or b(x,v,2,u) ;j:z‘{ Bi(2) fi(x,v)

where the ; is a set of initially unknown coeffi-
cients and N+ L is the number of boundary nodes
plus internal points. The interpolating functions
fi(x,y) and the particular solutions #; are link-
ed as

V2a=1; (22)
so that the domain integral can be transferred to
the boundary.

Substituting Eq. (22) into Eq. (21), and apply-
ing integration by parts twice for the domain
integral term of Eq.(20) lead to the following
dual reciprocity boundary integral equation.

ciuri—fuq*df-l—fqu*d]"
oo ! (23)
=31 (it [ aa*dr— [ Gudr)
J=1 r r
As for the interpolating function f, a radial basis
function f=1+7 is chosen which was chosen to
be generally sufficient to use for nonlinear prob-
lems (Patridge et al., 1992). Here, 7 stands for the
distance from a source point z, or DRBEM collo-
cation point j to a field point (x,y).

For the numerical solution of the integral Eq.
(23), the boundary is discretized into /N elements
and the values of u,q,#% and § are modeled in
terms of their nodal values and two linear inter-
polating functions ¢; and ¢.. Therefore, Eq. (23)
results in the following dual reciprocity boundary
element equation.

N N
2 Hirun— 23 Girgr
i - (24)
_ Y R N .

= kgl Bj ( kgl Hikuw—zl leqlw>

where

Hiw=H @t Ciaik

Hik:h%(k—l)—"h%'k:/;kil ¢zq*dp+/1:k ¢1q*dF (25)

Gik:giz(k—l)ﬁ'gilk:[_‘k?l ¢2u*d[‘+£k du*dl’
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where ;5 is the Kronecker delta, and H,, and Gz
represent the influence coefficient matrices result-
ing from the above discretization process. They
are the functions of geometry and can be readily
evaluated with the use of quadrature.

5. Numerical Implementation

For computer implementation of the numerical
solution for the present conjugate heat transfer
problem, the boundary element equation of ax-
isymmetric model Eq. (9) can now be written in
matrix form as

([H1+4IGIICI N TY=[GNa}  (26)

where, [C] is a diagonal matrix containing the
convective heat transfer coefficients. This equa-
tion represents a system of N unknowns with NV
Specified boundary variables, which can be read-
ily solved for the unknowns.

Dual reciprocity boundary element equation
Eq. (24) for the fluid region can now be expressed
in a matrix form as

[H{u)—[Ga)=(HI[T1-[GI[QN{B} (27)

It is noted that column vector {3} can be eval-
uated from Eq.(21) as {8} F] b} with the
chosen interpolating function f; and the function
b(x,y) of governing equation.

To get the temperature 7 of the final solution,
the flow velocity w must be obtained first by
solving momentum equation and, in this case, the
right hand side of Eq. (27) becomes a known vec-
tor. Thus, introducing the boundary conditions
into the nodes {#} and {¢}, and then after rear-
ranging the terms of each side lead to a set of
simultaneous equations. The solutions of flow
velocity field can now be readily obtained from
these algebraic equations.

For the temperature solution, the source term b
is expressed as follows as the fluid temperature 7°
varies from the duct entrance through the exit in
the axial direction.

%w(x,y)%=iw(x,y) T(x,y,2) =[Up){ T}

(28)
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where [ Up] represents a diagonal matrix with the
element of w(x,y)/a. Substituting the above
source term expression into Eq. (27) with the use
of general variable u instead of temperature T,
the following equation can be obtained :

[CHul+[H{u}=[G{a} (29)
where [C]=([HI[T1-[GI[Q] [F].

For simplicity in finding the numerical solu-
tions for the system, the two-level line integration
scheme (Jo et al., 1999) is employed in this study.
A linear approximation for the variations of T
and ¢ within each axial distance step z is adopted

in the form,
u=1—&) u"+ L™
— _ m m+1
CI—<1 gq)q +8aq (30)
_L m+l__ , m
=4 (u u™)

where &, and &, are parameters, taking values in
the range from O through 1, which position the
values of % and ¢, respectively, between the cal-
culation levels m and m+ 1. For the present study
a fully implicit scheme is chosen. Thus, substi-
tuting Egs. (30) into Eq.(29) with &=1 and
Eq=1 gives as

( [A(;:I +[H] > umﬂ_[G]qu:[A%um (31)

where the right hand side of Eq. (31) is known at
the current calculation level m+1 because it

involves values which are specified as the initially
known values or calculated at the previous calcu-
lation level m.

The temperature solution can be obtained by
using the axial direction marching scheme that
solves the above equation in each location step
with moving forward from the duct inlet to the
downstream in the axial direction.

6. Corner Treatment

When the boundary with discretized linear ele-
ments is smooth, both unique temperature and
heat flux (or flux) at the second extreme node of
element j-1 which is to be the first extreme node
of next consecutive element j have the same val-
ues unless the fluxes are prescribed as different.
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However, in general, a boundary element discre-
tization and actual physical geometry of the cal-
culation domain can yield a series of nodal points
of geometric discontinuity so that the boundary at
a geometrically discontinuous nodal point, join-
ing any two contiguous elements of the fixed
boundaries, may be prescribed differently (Jo et
al., 1999).

For the case where either a unique temperature
value or a unique flux value is prescribed at a
boundary node regardless of its geometric discon-
tinuity, the use of single nodes is generally suffi-
cient for modeling by two contiguous linear ele-
ments. On the other hand, when a discontinuous
value of flux at a boundary node is required,
double nodes are used at the nodal point in order
to allow for such discontinuity (see Figure 4). In
the present study, the single node has been used
for the temperature boundary condition and the
double nodes for the heat flux boundary condi-
tion, respectively.

7. Solution Algorithm

For the present conjugate heat transfer prob-
lem, two separate solutions for the solid and fluid
regions are sought to match the solid-fluid in-
terface continuity condition explicitly because of
coupled mechanism of the heat conduction in the
solid and the heat convection in the fluid. There-
fore the axisymmetric heat conduction problem
for the solid region of a thick walled pipe is solv-
ed first by assuming thermal boundary condition
of the solid-fluid interface, which is an unknown
a priori. Then after the heat convection problem
in thermally developing laminar flow inside the
pipe with fully developed velocity profile is solv-
ed at the solid-fluid interface boundary with the
boundary conditions obtained from the solution
for the solid region. Calculations proceed itera-
tively until the continuities of temperature and
heat flux at the interfacial boundary are satisfied.

Initial guess for the unknown interfacial ther-
mal boundary conditions is needed to start the
iterative calculation procedure. In the present
study, two solution algorithms for the interface
continuity conditions are tested. One is that the
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temperature or heat flux condition at the inter-
face is guessed and updated iteratively until the
interface continuity condition is satisfied. This
algorithm works well when the temperature con-
dition is imposed on the outer surface of thick
walled pipe. It is conformed in this study and
shown also from the previous paper (He et al.,
1995). However, when the heat flux condition is
imposed, the converged solution cannot be ob-
tained except a few limited cases. The onset of
instabilities leading to divergence is due to the
direct imposition of temperature at interface, which

Start

Assume local heat transfer coefficiant
. h, at solid-fluid interface, and Iocal
mean fleid lemperature T,

y

Salve tha axisyinmetric haat
carduction peablem of salid
regicr.

'

Chitain salic-fiuid irlesface
tesnperalues T_ , &nd heat
L{TE

Obtain fluid-side nterface heet flux
4, ¢ from the cantiruity corditior zt
tha sofid-Auid interface

Upcate hoand T o
with the salution of .L
fruid rsgion Solve the Grastz

A problom of fuid region

'

Obdain fluid-side interface
temperature T, - ard caloulate
locak mean fluig lemperature T,

.

Calculate docal convective
reat transier coetficient h,
at solid-fluid inetrface

d

= 7

Check T T,

sl

Fig. 5 Solution algorithm for the thermally devel-
oping conjugate heat transfer problem
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turns out to be an extremely rigid constraint. To
avoid such difficulty, the computation should be
started with a guessed distribution of temperature
almost equal to the exact solution, which will be
impractical.

The other is to use the coupling conditions for
the interface continuity condition. They are the
local convective heat transfer coefficient at the
interface and the local mean fluid temperature of
the pipe flow. These conditions are initially guess-
ed and updated iteratively as shown in Fig. 5. It
is seen in this study that this algorithm works well
for both the temperature and heat flux boundary
conditions at the outer surface of thick walled
pipe. Thus, the heat transfer coefficient is con-
sidered to be an effective interface condition for
transmitting thermal information through an in-
terface during the iteration process.

8. Results and Discussion

To illustrate the validity of the present BEM
technique for solving the conjugate heat transfer
problem, some numerical tests were performed for
the thermally developing laminar flow through
a thick walled pipe with following conditions
(see Fig. 1). Fluid is assumed to be water in the
present study.

7;=—=0.02 m
70=0.32 m
L=04m
1 dp_

= — . -1
i dz 36.75(m-s)

a=0.147X10"%m?/s
kr=0.613 W/mK
Pr=5.83

Thus flow conditions will have Peclet number
Pe=500 and Graetz number (Gz=50, where the
dimensionless numbers are defined as Pe=2wn
vi/a, Gz=4wnr?/La. For the conjugate heat
transfer conditions, ratio of thermal conductivity
of the pipe wall to that of the fluid (K=/ks/kys)
considered in the present test calculations for
comparison with Mori’s study (Mori et al., 1974)
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ranges from K=1 to 5000 for the case where a
constant heat flux at the outer surface of the pipe
is specified, and from K=0.1 to 100 for the case
where a constant temperature at the outer surface
of the pipe is specified.

Now, for the present calculations, the solution
domain of fluid region is discretized with 24
boundary nodes and 217 internal DRBEM collo-
cation nodes which are distributed with 10 sub-
intervals from a center node of the pipe to each
boundary nodes, as shown in Fig. 6. The calcula-
tion step in the axial direction is chosen as Az=
0.002 m. Thus the solid-fluid interfacial boundary
of the solution domain region is also discretized

N boundary nodes
(a) Boundary I"and domain 2

Node number

Collocation or

internal point
Linear

boundary element
(b) Boundary element nodes and internal points
Fig. 6 Geometric definitions for the DRBEM
analysis
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with Az=0.002 m, which results in 200 boundary
nodes at the interface side and 200 nodes at the
opposite side as well. Each insulated sides are
discretized with 6 elements respectively. Since the
velocity and temperature solutions are to be given
at the boundary nodes and internal points only,
Reynolds number and Nusselt number are nu-
merically obtained from the mean flow velocity
wn and the mixed mean temperature 7, at each
cross—section as

2 r=r;
Wn=—"3% wrdr
Vi Jr=0
2 r=r;
Tm,z =3 / w T?’d?’
Vi Wm =0

Re— WnD _ wWnl7;

v v
_hD _,  —(0T/on)rr,
Nuz— kf =27; Tw_Tm,z

And for the present iterative scheme, relative error
for the convergence criteria of the solution algo-
rithm is calculated as the following equation.

e=[1.0—522L (32)

Here the subscript inf means the interface con-
dition. To ensure convergence, local convective
heat transfer coefficient at the interface and the
local mean fluid temperature of the pipe flow is
updated with under-relaxation factor A.

<h2> update:)l(hz> new+ (1 _/1) <h2> old (33)
< Tm,z) update:/l( Tm,z) new+ (1 _/D ( Tm,z) old (34)

Then, in this study, values of e=0.1X1073 A=
0.8 are taken.

Two cases of boundary condition given by
either uniform temperature or uniform heat flux
are tested for the present study, where inlet fluid
temperature is chosen as 7,=30°C. Numerical
solutions are verified by the comparison with the
only available analytic solution for this kind of
problem, where a power series form with the first
five terms is employed to assume the temperature
distribution at the solid-fluid interface (Mori et
al., 1976 ; 1974). Figs. 7 and 8 respectively repre-
sent the variations of the local Nusselt number
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“Maor et 8l
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Nu. and the dimensionless interface tempera-
ture (7°— Tw)/(Te— Tw) along the dimension-
less axial distance z/7;Pe when the uniform tem-
perature 7, =100C is specified on the outer
surface of the pipe. Results for the five cases of K
value show that the present BEM solution is in
good agreement over the whole dimensionless
axial distance with the Mori’s analytic solution
(Mori et al., 1976).

For the case of uniform heat flux boundary
condition, where (97°/0%) »=10.0 C/m is spec-
ified on the outer surface of the pipe, the calcu-
lation results of BEM solution are depicted in
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Figs. 9 and 10 which respectively shows the nu-
merically calculated Nusselt number variations
and the variations of the interface temperature
(T—T.)/Kr,(0T/0n) » along the dimension-
less axial distance. From the figures it can be also
found that the computed values are in good agree-
ment with Mori’s analytic values (Mori et al.,
1974).

As the results, the present BEM solutions for
the conjugate heat transfer problem generally
are in good agreement with the Mori’s analytic
solutions for the thermally developing region of
thick walled pipe in which the flow is laminar

Chang-Yong Choi

and fully developed. When we note that the an-
alytic solution also involves some approxima-
tions as mentioned above, minor discrepancies
between the BEM and Mori’s solutions can be
regarded as the acceptable. Therefore the present
analysis method is considered to be valid for the
present problem with any kind of thermal bound-
ary conditions.

9. Conclusions

A boundary element method (BEM) was ap-
plied for the solution of the conjugate heat trans-
fer problem of a thick walled pipe with thermally
developing laminar internal flow of which the
velocity profile is fully developed. The dual reci-
procity BEM was applied to the solution of fluid
region inside pipe while the axisymmetric BEM
was used to solve the solid region of thick walled
pipe. In this study, an iterative and numerically
stable BEM solution algorithm was presented
which uses the coupled interface conditions ex-
plicitly instead of the uncoupled ones. Both the
local convective heat transfer coefficient at solid-
fluid interface and the local mean fluid tempera-
ture are guessed initially and updated as the un-
known interface thermal conditions for the itera-
tive solution procedure in the calculations. Two
example cases of imposing either uniform tem-
perature or uniform heat flux boundary condi-
tions were tested and compared with available
analytic solutions. Test results are shown to be
in good agreement with the analytic solutions
for both examples with different boundary condi-
tions. As a final remark, it should be noted that
the BEM solution method for the thermally de-
veloping conjugate heat transfer problem present-
ed in this paper is a general one that can be ex-
tended to the arbitrary duct geometry and bound-
ary conditions without any modification.
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